Prof. Elena Stanghellini
Click here for my contact details and web
page.
|
At 360
Port Avenue, with Elizabeth, John and Marco
|
Research interests
All my
research has been devoted to Graphical Markov Models. The class of Graphical
Markov Models is so vast that includes many existing models, like Structural
Equation Models, log-linear models, and so on, that I never get tired in
exploring them from the theoretical point of view and in using them in applied
data analysis.
From the
theoretical point of view, I have been attracted by issues on distortion
induced by unobserved factors or by informative selection. For that, I have developed
conditions for identification of the parameters of interest as well as tools to
perform sensitivity analysis or to construct uncertainty intervals. All these
issues are strongly linked to causal inference and mediation analysis.
Applied research
interests include both biomedical issues (some of them linked to COVID-19, see
paper 2 and 7, below) and micro-economic and financial data (see e.g. paper 3
and 4, below).
Papers on peer reviewed scientific
journals (since 2004)
- STANGHELLINI E., DORETTI M., TEZUKA T. (2024).
A note on “Simple graphical rules to assess selection bias in general-population
and selected-sample treatment effects” by M. B. Mathur and I. Shpitser.
American Journal of Epidemiology. Forthcoming. https://doi.org/10.1093/aje/kwae337
- GOURGOURA K., RIVADENEIRA
P., STANGHELLINI E., CARONI C., BARTOLUCCI F., …, PUCCI G., VAUDO G.
(2024). Modelling the long term impact of COVID-19
using Graphical Chain
Model. BMC Infectious Diseases.
https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-024-09777-0
- DE NOVELLIS G., MUSILE
TANZI P., STANGHELLINI E. (2024). Covenant-lite agreement and credit risk:
a key relationsjip on the leveraged loan market.
Research In International Business and Finance,
ISSN 0275-5319, E-ISSN 1878-3384, Vol. 70, no Part B, article id 102377.
10.1016/j.ribaf.2024.102377
- DA FERMO C., MUSILE TANZI
P., NICOLOSI M., STANGHELLINI E. (2024). "On the relationship between
Financial and Sustainable variables: Insights from Graphical Gaussian
Model”. Journal of Financial Management, Markets and Institutions. http://dx.doi.org/10.2139/ssrn.4312617
- DORETTI M., GENBÄCK,
M., STANGHELLINI E. (2024). “Mediation analysis
with case-control sampling: Identification and estimation
in the presence of a binary mediator”. Biometrical Journal. https://doi.org/10.1002/bimj.202300089.
- DE NOVELLIS G., MUSILE
TANZI P., RANALLI G., STANGHELLINI E. (2024). “Leveraged finance exposure in the banking system: Systemic risk and interconnectedness”.
Journal of International Financial Markets,
Institutions and Money, Vol. 90. https://doi.org/10.1016/j.intfin.2023.101890.
- LANZILAO L., MARINIELLO
A., POLENZANI B., ALDINUCCI A., NAZERIAN P., PROTA A., GRIFONI S., TONIETTI
B., NERI C., TURCO L., FANELLI A., AMEDEI A., STANGHELLINI E. (2023). “A
Computational Approach in the Diagnostic Process of
COVID-19: The Missing Link between the Laboratory and Emergency Department”. Frontiers in Bioscience
(Landmark Ed). https://pubmed.ncbi.nlm.nih.gov/36866553/
- GUERRANTI R., FASANO T., …, LANZILAO
L., STANGHELLINI E., GIAVARINA D., RIVA G., PADOAN A. (2022) “Big
data e intelligenza artificiale in medicina di laboratorio - Artificial intelligence and big data in laboratory medicine” Biochimica Clinica; 47(1)
074-08. (On Line) doi: 10.19186/BC_2022.080
- STANGHELLINI E., KATERI
M. (2022). “Exact Parametric
Mediation for Ordinal Outcome
and Binary Mediator”. Epidemiology, Vol. 33(6),
pp. 840-842 https://pubmed.ncbi.nlm.nih.gov/36220580/
- DORETTI M., RAGGI M., STANGHELLINI E.
(2022) “Exact parametric causal mediation with a binary outcome with
a binary mediator”. Statistical Methods and its Application, Vol.
31, pp. 87–108, https://link.springer.com/article/10.1007/s10260-021-00562-w. Published online first in
2021.
- RAGGI M., STANGHELLINI E., DORETTI M.
(2021). “Path Analysis for Binary Random Variables”. Sociological
Methods and Research. Published online first. https://doi.org/10.1177/00491241211031260
- DORETTI M., RAGGI M., STANGHELLINI E.
(2021) “Exact parametric causal mediation with a binary outcome with
a binary mediator”. Statistical Methods and its Application.
Published online first. https://link.springer.com/article/10.1007/s10260-021-00562-w
- STANGHELLINI E., DORETTI M.
(2019). “On marginal
and conditional parameters in logistic regression models”. Biometrika, Vol. 106, 3, pp. 732–739.
- DORETTI
M., GENELETTI S., STANGHELLINI E. (2018). “Missing
Data: A Unified Taxonomy Guided by Conditional Independence”. International
Statistical Review, Vol. 86, 2, pp. 189-204.
- GENBÄCK,
M., NG. N., STANGHELLINI E., DE LUNA X. (2017). “Predictors of decline in
self-reported health: addressing non-ignorable dropout in longitudinal
studies of aging”. European Journal of Ageing. https://doi.org/10.1007/s10433-017-0448-x
- MEALLI
F., PACINI B., STANGHELLINI E. (2016). “Identification of principal causal effects using secondary
outcomes in concentration graphs”. Journal of Educational and Behvioural Statistics, doi:10.3102/1076998616646199. Vol. 41, pp. 463-480.
- DORETTI
M., GENELETTI S., STANGHELLINI E. (2016). “Tackling non.ignorable dropout in the presence of time
varying confounding”. Journal of the Royal Statistical Society,
Series C, doi: 10.1111/rssc.12154. Vol.
65, pp. 775-795.
- PIERRI
F., STANGHELLINI E., BISTONI N. (2016). “Risk analysis and retrospective unbalanced data”.
REVSTAT, 14, Vol. 2, pp. 157-169.
- ALLMAN E.S., RHODES J. A.,
STANGHELLINI E., VALTORTA M. (2014). “Parameter identifiability of
Discrete Bayesian Networks with Hidden Variables”. Journal
of Causal Inference, doi:
10.1515/jci-2014-0021. Electronic Journal.
- STANGHELLINI E., PAKPAHAN E.
(2014). “Identification of Causal Effects in Linear Models: beyond
Instrumental Variables”. TEST, 24, Vol. 3, pp.489-509, doi: 10.1007/s11749-014-0421-3.
- GENBÄCK,
M., STANGHELLINI E., DE LUNA X. (2014). “Uncertainty Intervals for regression parameters with
non-ignorable missingness in the outcome”. Statistical Papers,
56, Vol. 3, pp. 829-847, doi: 10.1007/s00362-014-0610-x.
- NICOLOSI
M., GRASSI S., STANGHELLINI E. (2014). “Item Response Models to Measure Corporate Social
Responsibility”. Applied Financial Economics,
24, Vol. 22, pp.1449-1464, doi: 10.1080/09603107.2014.925070.
- PIERRI
F., BURCHI A., STANGHELLINI E. (2013). “La capacità
predittiva degli indicatori di bilancio: un metodo per le PMI”. Piccola
Impresa/Small Business, Vol 1, pp. 85-108
(in Italian).
- STANGHELLINI
E., VANTAGGI B. (2013). “On the identification
of discrete concentration graph models with one hidden binary variable ”.
Bernoulli, 19, Number 5A, 1920-1937, doi:
10.3150/12-BEJ435.5.
- STANGHELLINI E. (2012).
Contribution to the Discussion to the paper of Wermuth
N. and Sadeghi K. “Sequences of regressions and their
independences”, TEST, vol. 21, p. 265-267, doi: 10.1007/s11749-012-0287-1.
- STINGO
F.C., STANGHELLINI E., CAPOBIANCO R. (2011). “On the estimation of a binary
response model in a selected population”. Journal of Statistical
Planning and Inference, 141, pp. 3293-3303, doi:10.1016/j.jspi.2011.04.014.
- HUTTON J.L., STANGHELLINI E.
(2011). “Modelling bounded health scores with censored skew-normal
distributions”. Statistics
in Medicine, 30, pp. 368–376, doi:
10.1002/sim.4104.
- FORCINA
A., GIOVAGNOLI A., STANGHELLINI E. (2011). “Non-compliance in surgical patients
with herniated lumbar discs: an application of an extended latent class
model as a selection model”. Statistical Modelling, 11(4),
pp. 311-324, doi: 10.1177/1471082X1001100402.
- FALOCCI
N., PANICCIA’ R., STANGHELLINI E. (2009). “Regression modelling of the flows
in an input-output table with accounting constraints”. Statistical
Papers, 50, pp. 373-382.
- GIORGI
ROSSI. P., MANTOVANI J., FERRONI J., FORCINA A., STANGHELLINI E., CURTALE
F., BORGIA P. (2009). “Bacterial
meningitis surveillance in Lazio, Italy: a system integrating laboratory
specificity to hospitalization database sensitivity”. BMC
Infectious Diseases, 9.
- MARCHETTI,
G.M., STANGHELLINI, E. (2008), " A note
on distortions induced by truncation, with application to linear
regression systems". Statistics &
Probability Letters, 78, pp.824-829.
- WERMUTH N., STANGHELLINI E.
(2006). Contribution
to the Discussion to the paper of Castelo R. e Roverato. A. “A robust procedure for Gaussian graphical model search
from microarray data with p lager than n”. Statistica,
66, pp. 366-368.
- STANGHELLINI E. (2006).
“On Statistical Issues raised by the New Capital Accord”. Statistica
Applicata, 18, 2, pp. 389-405.
- STANGHELLINI,
E. , WERMUTH, N. (2005)," On the
identification of path analysis models with one hidden variable".
Biometrika, 92, 2, pp. 337-350.
- STANGHELLINI E., VAN DER HEIJDEN
P.G.M. (2004). “A
multiple-record systems estimation method that takes observed and
unobserved heterogeneity into account”. Biometrics, 60, pp.
510-516.
- STANGHELLINI E. (2004). “Instrumental variables
in Gaussian directed acyclic graph models with an unobserved
confounder”. Environmetrics,
15, pp. 463-469.
Books or chapters
in books (since 2004)
- FASANO E., GUARDABASCIO
B., STANGHELLINI E. (2023) The Role of ESG on Credit Rating in the Banking
Sector: A Mediation Analysis to Disentangle the Direc
and Indirect Effects, in ESG
Integration and SRI Strategies in the EU, Palgrave Macmillan. 10.1007/978-3-031-36457-0_8
- STANGHELLINI E. (2018)
“Strategie della ricerca. Una introduzione”. In Cimmino L., Fanò L.
Petrillo C., Santambrogio A., Stanghellini E.,
Veronesi F. (Eds.) Fare Scienza oggi, Vol.
2 Atti dei Convegni Interdipartimentali Università degli Studi di
Perugia, Morlacchi Editore U.P. ISBN: 788860749581.
- STANGHELLINI E., RANALLI M.G. (2017)
“Population size estimation using a categorical latent variable”. In Boehning D., Bunge J., van der Heijden P.G. Capture-Recapture
Methods for the Social and Medical Sciences. Chapmand
and Hall. ISBN: 9781498745314.
- MEALLI F., PACINI B.,
STANGHELLINI E. (2014). “Identification
of principal causal effects using secondary outcomes”. In Carpita
M., Brentari e. Qannari
E. Advances in Latent Variables. Studies in Theoretical and Applied
Statistics. Springer-Verlag, doi:
10.1007/10104_2014_15.
- GOTTARD A., STANGHELLINI
E., CAPOBIANCO R. (2013). “Semicontinuous regression models with Skew
distributions”. In: Grigoletto M., Lisi F., Petrone S.. Complex Models and Computational Methods in
Statistics. Springer Verlag, ISBN: 9788847028708, doi:
10.1007/978-88-470-2871-5-12.
- STANGHELLINI E. (2009). Introduzione
ai metodi statistici per il Credit Scoring. Springer Italia. ISBN:
9788847010802.
- FORCINA A. STANGHELLINI E.
(2005). Elementi di Statistica per economia, Morlacchi Editore,
Perugia (Textbook).